Época de Recurso – 04.02.2020

1 hora (14 valores)

Nome:

Espaço reservado para classificações			
1 a) (10)	2 a) (10)	4 a) (10)	5 a) (10)
1 b) (10)	2 b) (15)	4 b) i) (10)	5 b) (10)
1 c) (10)	2 c) (10)	4 b) ii) (10)	
	3 (10)	4 c) (15)	
T:	l	1	I

NOTA: em todos os testes utilize um nível de significância de 5%.

- 1. Seja uma variável aleatória com distribuição uniforme $X \sim U(0, \theta)$, com $\theta > 0$.
- (a) Determine o estimador pelo método dos momentos para o parâmetro θ .

$$\mu'_1 = \bar{X} \Leftrightarrow E(X) = \bar{X} \Leftrightarrow \frac{\theta}{2} = \bar{X} \Leftrightarrow \tilde{\theta} = 2\bar{X}$$

(b) Mostre que a média da amostra é um estimador enviesado para θ e encontre um estimador centrado para o parâmetro θ .

$$E(\bar{X})=\mu=\frac{\theta}{2}\neq\theta$$
, então \bar{X} é um estimador enviesado para θ $E(2\bar{X})=\mu=2\frac{\theta}{2}=\theta$, então $2\bar{X}$ é um estimador centrado para θ

(c) De uma população normal, extraíram-se várias amostras de dimensão **n**. Comente a afirmação " A variância da média da amostra é sempre igual à variância da população". Corrija,

A afirmação está errada. De facto

demonstrando, se achar necessário.

A afirmação está errada. De facto
$$Var(\bar{X}) = Var(\frac{\sum_{i=1}^{n} X_i}{n}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X) = \frac{1}{n^2} n * Var(X) = \frac{\sigma^2}{n} < \sigma^2$$
 para $n > 1$, pelo que se pode concluir que a variância da média da amostra subestima s

para n > 1, pelo que se pode concluir que a variância da média da amostra subestima a variância da população.

2. O controlo de qualidade de certos produtos, numa unidade fabril, é feito através da inspeção por amostragem desses produtos. Considere que o número de defeitos em cada produto é uma variável aleatória com distribuição de Poisson com média desconhecida. Numa amostra aleatória de 90 produtos registou-se um total de 9 defeitos. O intervalo de confiança a 99% para o número esperado de defeitos por produto para a amostra particular selecionada é (0.0141, 0.1859)

a. A unidade fabril garante que "O número médio de defeitos por produto é igual a 0.05".
 Comente a afirmação.

Não se pode afirmar que "O número médio de defeitos por produto é igual a 0.05", mas como $0.05 \in IC_{\lambda}^{99\%}$ pode afirmar-se que existem 99% de probabilidade de número médio de defeitos por produto ser igual a 0.05, isto é, a garantia é verdadeira

b. Determine o nível de confiança que reduz para 0.1 a amplitude do intervalo de confiança para a mesma amostra? Comente o resultado encontrado com base nos conceitos de precisão e confiança na estimação de parâmetros.

Amplitude do
$$IC_{\lambda}^{(1-\alpha)100\%} = 2z\alpha_{/2}\sqrt{\frac{\bar{x}}{n}} = 0.1 \Leftrightarrow z\alpha_{/2} = \frac{0.1}{2\sqrt{\frac{\bar{x}}{n}}} \Leftrightarrow z\alpha_{/2} = \frac{0.1}{2\sqrt{\frac{0.1}{90}}} \Leftrightarrow z\alpha_{/2} = 1.5$$

$$P(-1.5 < Z < 1.5) = 2\Phi(1.5) - 1 = 2 * 0.9332 - 1 = 0.866$$

Pelo que o nível de confiança teria de ser aproximadamente 87%. Este é o resultado esperado, visto que uma maior precisão do resultado consubstanciado numa menor amplitude do intervalo só é possível reduzindo a confiança.

- c. Explique como e porque varia a amplitude de um intervalo de confiança com a dimensão da amostra, mantendo-se constante o nível de confiança. Qual o efeito na precisão da estimativa? A amplitude de um intervalo de confiança diminui, o que significa que o estimador se torna mais preciso, com o aumento da dimensão da amostra porque qto maior for o número de elementos na amostra maior é a informação sobre o comportamento da população.
- 3. Uma sondagem sobre as intenções de voto feita a 1000 eleitores nos EUA resultou na seguinte tabela de contingência:

		Sexo	
		Masculino	Feminino
Intenção de voto	Republicano	200	250
	Democrata	150	300
Inte	Independente	50	50

Com base na informação que consta desta tabela e para um nível de significância de 5%, comente a independência entre o sexo do individuo e a sua inclinação partidária.

$$H_0: p_{ij} = p_i \ p_j \ \forall (i,j) \text{ contra } H_1: p_{ij} \neq p_i \ p_j \ algum (i,j) \ (i = 1,2,3; j = 1,2)$$

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{\left(\boldsymbol{n}_{ij} - n.\,\widehat{p}_{i.}\,\,\widehat{p}_{j.}\right)^{2}}{n\,\widehat{p}_{i.}\,\,\widehat{p}_{j.}} \dot{\sim} \,\boldsymbol{\chi}_{\left[\underbrace{(3-1)(2-1)}_{2}\right]}^{2}$$

Frequências esperadas				
	Sexo			
Row variable	Masculino	Feminino	Total	
Republicano	180	270	450	
Democrata	180	270	450	
Independente	40	60	100	
Total	400	600	1000	

$$q_{observ} = 16.2037 \Rightarrow valor - p = P(\chi^{2}_{(2)} > 16.2037) = 0.0003$$

Ou
$$W = \{q: q > q_{\alpha}\} \text{ com } q_{\alpha}: P(Q > q_{\alpha}) = 0.05 \Rightarrow q_{\alpha} = 5.9915$$

Então $q_{observ} \in W \Rightarrow$ rejeita-se a hipótese nula de independência, isto é, o sexo do indivíduo não é independente da sua inclinação partidária.

4. Por forma a estudar os determinantes das margens de lucro dos *franchisados* da empresa *XPTOStyle*, foi estimado o seguinte modelo (via Mínimos Quadrados Ordinários):

$$margem = \beta_0 + \beta_1 \log(vendas) + \beta_2 ncomp + \beta_3 nparc + \beta_4 ntemp + u$$

O *output* do modelo estimado:

Dependent Variable: MARGEM Method: Least Squares Included observations: 400

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(VENDAS) NCOMP NPARC NTEMP	23.77211 1.703269 0.195730 1.276986 -1.473138	3.932060 0.446501 0.262909 0.371987 0.639404	6.045713 3.814703 0.744476 3.432877 -2.303925	0.0000 0.0002 0.4570 0.0007 0.0217
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.083776 0.074498 5.020050 9954.354 -1210.436 9.029367 0.000001	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	t var erion on criter.	38.77423 5.218184 6.077178 6.127071 6.096936 1.859872

Em que:

- margem, corresponde à margem de lucro do franchisado i;
- *vendas*, corresponde às vendas do *franchisado i* (em centenas de euros);
- ncomp, corresponde ao número de trabalhadores a tempo integral, do franchisado i;
- nparc, corresponde ao número de trabalhadores a tempo parcial, do franchisado i;

- ntemp, corresponde ao número de trabalhadores temporários (sazonais), do franchisado i.
- (a) Interprete as estimativas para β_1 e para β_2 .

 β_1 — um aumento de 1% nas vendas do *franchisado*, em média, tudo o resto constante, implicará um aumento aproximado de 0.017 unidades da margem de lucro do *franchisado i*

 β_2 – um aumento de 1 de trabalhador a tempo integral adicional, do *franchisado*, em média, tudo o resto constante, implicará um aumento aproximado de 0.1957 unidades da margem de lucro do *franchisado* i

(b) Foi estimado um outro modelo:

Dependent Variable: MARGEM Method: Least Squares Included observations: 400

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	19.43422	4.748420	4.092776	0.0001
LOG(VENDAS) NCOMP	1.740787 -0.801716	0.444215 0.930328	3.918790 -0.861756	0.0001 0.3893
NPARC	3.475134	0.841012	4.132088	0.0000
NTEMP NCOMP^2	1.676619 0.207267	2.537189 0.158792	0.660818 1.305272	0.5091 0.1926
NPARC^2	-0.409514	0.142599	-2.871792	0.0043
NTEMP^2	-0.782505	0.597350	-1.309961	0.1910
R-squared	0.106448	Mean depende	nt var	38.77423
Adjusted R-squared	0.090492	S.D. dependent var		5.218184
S.E. of regression	4.976485	Akaike info criterion		6.067122
Sum squared resid	9708.039	Schwarz criterion		6.146951
Log likelihood	-1205.424	Hannan-Quinn criter.		6.098736
F-statistic	6.671221	Durbin-Watson stat		1.862591
Prob(F-statistic)	0.000000			

i. Obtenha e interprete o ponto de viragem (caso exista) do regressor *nparc*.

Ponto de viragem=
$$nparc = \frac{-\widehat{\beta}_3}{2*\widehat{\beta}_6} = \frac{-3.475134}{2*(-0.409514)} = 4.243$$

Interpretação: o ponto de viragem do regressor *nparc* indica que a partir de aproximadamente 4 trabalhadores a tempo parcial, o efeito parcial sobre margem de lucro de um dado *franchisado* passa a ser negativo.

ii. O que pode concluir acerca da significância conjunta dos regressores adicionados ao modelo?

$$H_0$$
: $\beta_5 = \beta_6 = \beta_7 = 0$, $contra\ H_1$: $\exists\ \beta_j \neq 0\ (j=5,6,7)$

estatística teste:
$$F=\frac{(R^2-R_*^2)/(m)}{(1-R^2)/(n-k-1)} \sim F_{(m,\,n-k-1)}$$

$$f_{0bs} = \frac{(0.1064 - 0.0838)/3}{(1 - 0.1064)/(400 - 7 - 1)} = 3.3047$$

 $valor - p = P(F_{(3,392)} > 3.3047) = 0.0203 < 0.05$, então rejeita-se H_0 e os regressores adicionados ao modelo são conjuntamente significativos.

(c) Considere o seguinte *output*:

Dependent Variable: RES^2 Method: Least Squares Included observations: 400

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	197.7107	51.99378	3.802583	0.0002
LOG(VENDAS)	-16.49139	4.864026	-3.390481	0.0008
NCOMP	20.35428	10.18682	1.998100	0.0464
NPARC	-11.85814	9.208827	-1.287693	0.1986
NTEMP	-54.85223	27.78146	-1.974419	0.0490
NCOMP^2	-2.769698	1.738730	-1.592943	0.1120
NPARC^2	1.821772	1.561414	1.166745	0.2440
NTEMP^2	14.55501	6.540804	2.225263	0.0266
R-squared	0.053599	Mean dependent var		24.27010
Adjusted R-squared	0.036699	S.D. dependent var		55.51930
S.E. of regression	54.49103	Akaike info criterion		10.85375
Sum squared resid	1163955.	Schwarz criterion		10.93358
Log likelihood	-2162.749	Hannan-Quinn criter.		10.88536
F-statistic	3.171537	Durbin-Watson	stat	2.018326
Prob(F-statistic)	0.002825			

Onde *RES*^2 corresponde ao quadrado dos resíduos do modelo estimado na alínea (b). Qual a informação que dele podemos retirar? Com base na conclusão anterior, discuta a validade dos resultados obtidos até aqui.

$$F = \frac{R_{\hat{u}^2}^2/(m)}{\left(1 - R_{\hat{u}^2}^2\right)/(n - m - 1)} \sim F_{(m, n - m - 1)}$$

$$f_{0bs} = \frac{0.0536/7}{(1 - 0.0536)/(400 - 7 - 1)} = 3.1716$$

$$valor - p = P(F_{(7, 392)} > 3.1716) = 0.0028 < 0.05,$$

$$Ou \ LM = nR_{\hat{u}^2}^2 \sim \chi_{(m)}^2 \Rightarrow LM = 400 * 0.0536 = 21.44 \text{ e}$$

$$P\left(\chi_{(7)}^2 > 21.44\right) = 0.0032 < 0.05$$

então rejeita-se \mathcal{H}_0 e pode afirmar-se que o modelo sofre de heterocedasticidade

5. Considere o modelo

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i$$

em que u_i tem média nula e variância constante. Sabe-se ainda que uma amostra $\{(x_{1i}, x_{2i}, y_i): i = 1, 2, ..., 1000\}$ foi retirada da população. Um aluno de Estatística II estimou a seguinte equação (via Mínimos Quadrados Ordinários):

$$\tilde{y}_i = \tilde{\beta}_0 + \tilde{\beta}_1 x_{1i}$$

Formalize e discuta o enviesamento e consistência (assim como a sua direção) do estimador dos Mínimos Quadrados Ordinários, nas seguintes situações:

- (a) A variável x_2 está positivamente correlacionada com a variável x_1 , mas não tem qualquer efeito sobre y.
 - Se a introdução da variável x_2 não tem qualquer efeito sobre y_i é porque $\beta_2 = 0$, o que significa que a variável x_2 não aparece no modelo verdadeiro, logo o estimador dos MQ para β_1 é não enviesado apesar de x_2 está positivamente correlacionada com a variável x_1 .
- (b) A variável x_2 está negativamente correlacionada com a variável x_1 e tem um efeito positivo sobre y.

Se a introdução da variável x_2 tem um efeito positivo sobre y_i , é porque $\beta_2 > 0$ o que significa que a variável x_2 está omissa no modelo estimado pelo que sendo x_2 negativamente correlacionada com a variável x_1 , $\tilde{\delta}_1 < 0$ logo o estimador dos MQ para β_1 é enviesado e o sinal do enviesamento será negativo.

TABLE 3.2 Summary of Bias in $\widetilde{\beta}_1$ When x_2 is Omitted in Estimating Equation (3.40)			
	$\operatorname{Corr}(x_1,x_2)>0$	$\operatorname{Corr}(x_1,x_2)<0$	
$\beta_2 > 0$	Positive bias	Negative bias	
$\beta_2 < 0$	Negative bias	Positive bias	